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Abstract

The paper investigates the effects of non-Fourier characteristics of the material on oscillating thermal fields. A general solution in terms
of temperature Fourier transform is obtained for an 1-D slab with convective boundary conditions. A transfer matrix of the slab is evaluated
and it is shown that its analysis gives information about the non-Fourier behaviour of the material. Periodic conduction is analysed for both
harmonic and nonharmonic boundary conditions, and the effect of surface convection is pointed out through the evaluation of its influence
on surface temperature phase lag and amplitude. The possibility of evaluating relaxation time from phase lag measurements is pointec
out together with the limits imposed by the surface convection. A similar technique is shown to be theoretically applicable to periodic
nonharmonic boundary conditions through the evaluation of the temperature-heat flux cross-correlation.

0 2003 Elsevier SAS. All rights reserved.

1. Introduction which assures a finite propagation velocity of thermal pulses,
Ja/to plays the role of the thermal wave speed. Eq. (4) has
Fourier law of conduction, combined with the energy the form of the telegraph equation and waves are attenuated
equation for rigid bodies, leads to the diffusion equation by the fact thatr is finite (and indeedyp is expected
to be very small in solids at room temperature, although,
— =aV?T (1) to the knowledge of the author, no reliable measurements
appear to be available in the literature). Later many other
which has the rather unphysical property of giving rise to authors derived, in different ways, Eq. (2) (see, for example,
instantaneous propagation of thermal pulses. Cattaneo [1,2]Tavernier [4], Muller [5], Meixner [6], Joseph and Preziosi
was the first to propose a correction to Fourier law, based on[7] the latter reporting a very interesting and complete
the kinetic theory of gases, and later Vernotte [3] proposed bibliographic chronology). Joseph and Preziosi [7] also

independently a similar correction proposed a madification of Cattaneo law by adding a further
dq term to Eq. (2)
g+ —to=—kVT —ktyV— (5)
where 1 is the relaxation time. We shall call Eq. (2) by ot T _ _
Cattaneo’s equation and Fourier law is obtained by setting Which can be written in an alternative form, by using Eq. (3),
to=0. as
- . . 3

Combining Eg. (2) with the energy equation g+ a_ctzto _ mlvzq VT 6)

aT
peo-=-Vq 3) Eq. (4) then becomes
under the hypothesis of constant properties, leads to thed7 +t032_T =aV2T+at1V2£ 7
hyperbolic heat conduction equation ot 012 ot
9T 927 to is again a relaxation time wheregasis sometime called
= + ¢ =z —aV2T (4) “retardation” time. Eq. (5) is often referred as Jeffrey type

t t

conduction equation and a deep analysis of this equation and
its implications can be found in [7]. These modifications of
E-mail address: gianpietro.cossali@unibg.it (G. Cossali). the Fourier law, while solving the above mentioned paradox
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Nomenclature
Bi nondimensional convective coefficient (Biot Greek symbols
number:(hL)/k) « thermal diffusivityk /(oc)
¢ specific heat B ratio of retardation and relaxation timg/zo
C cross-correlation Y function
E. functions r cross-correlation Fourier transform
g function 8 Dirac delta-function
H complex coefficient A difference
h convective heat transfer coefficient ¢ fluctuating temperature
I complex function A solutions of the associate polynomial
Im{}  imaginary part A A complex functions _
k thermal conductivity e,i ?on?mensmnal coordinate
. . E unction
K |mpose_d heat flux Fourier transform n fluctuating part of imposed heat flux
L slab thickness :
M transfer matrix P denS{ty . . .
. T nondimensional time (Fourier number/L?)
n integer number 10 nondimensional relaxation time (Vernotte
P imposed heat flux number(roa) /L2)
q heat flux ¢ phase lag
0 heat flux Fourier transform @ heat flux Fourier transform (harmonic case)
Ry complex functions "2 complex function
Re{}  real part 1) nondimensional frequency; (@L2) /«
S temperature Fourier transform @ frequency
S+ complex coefficients Subscripts
T time period ,
T temperature a time average
) 0 relative tof =0
! t|mg ) 1 relative tot =1
X position g fluid
z nondimensional variable r real part
Zy complex coefficients for the harmonic case i imaginary part

of instantaneous propagation, are not without drawbacks,below, in all the subsequent analysis the paramgteill be
and criticisms were raised by different authors [8—10]. set to zero, thus considering only the Cattaneo case.

In the recent years, many papers can be found in the The problem of oscillating boundary conditions was
literature dealing with solutions of the hyperbolic heat already addressed by Tang and Araki [40,41] and B. Abdel-
equation (4), under different boundary conditions (see, Hamid [42] under imposed harmonic oscillation of surface
for example, [11-20]) or by numerical methods [21-28]. heat flux. The present paper deals with generally periodic
A strong impulse to non-Fourier conduction studies was (also nonharmonic) boundary conditions, taking also into
given by modern application of laser heating, where very account the effect of convection, and suggesting a possible
rapid heat pulses are generated and possible deviation fronway to detect non-Fourier behaviour by phase measurements
Fourier law may produce significative differences in heat (instead of amplitude measurements), an approach implied
propagation (see [29-31], for example). It should be re- also by the work of Tang and Araki [40]. The fact that
marked that, apart few well established results for sec- convection is considered allows to show the limits of such
ond sound in liquid He and solids at very low temper- Possible experimental approach as the convective effect may
atures [32-36], conclusive experimental confirmations of produce only apparent deviations from Fourier behaviour.
deviation from Fourier law in solids at room tempera-
ture are still lacking (see, for example, [37]) although
some results for inhomogeneous solids are instead available2. A general solution of the 1-D hyper bolic equation
[38,39].

The present paper deals with oscillating thermal fieldsin ~ Let now consider the case of a finite 1-D slab having
a finite 1-D slab, caused by oscillating boundary conditions thicknessL, in the previous equations thew stands for
and, although a general solution for Eq. (7) will be presented d/dx, and introducing the nondimensional coordinate-
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x/L and timet = ta/L? (v is often referred as Fourier
number) Eqg. (7) becomes

aT 02T

AR 8
o T 052 ®)

with V = d/dg, 19 = foar/L? (10 is sometime referred as
Vernotte number) ang = #1/19, and Eq. (5) becomes

aT
=V?T + BroVP—
ot

(9)

4 K (1 + prolt
— TN = —— 00—
4 8t0 L Oar

The search of oscillating solutions can be pursued by

introducing the following transformation:
+00

T 7)=Ta(€) + / S(,£)e'" do (10)
—00

where T, (€) = (T, 1)) = im7_oo(1/T) [ T(€, 7)dr;

it is then supposed that the temperature field fluctuates
around a well-defined value which may depend only on the

position. The nondimensional frequengyis related to the
dimensional frequency by the relationw = (@L?)/«. By
applying the operataf) to Eq. (8) one obtains:

V2T, =0
and substitution of (10) into Eq. (8) gives:
(i — o) _9%S(w,§)
At ipory)” T e (1)

The solution of Eq. (11) can be obtained through the
associate polynomial equation

2_, (i — Tow)
(1+iBwTo)
whose roots are

w —
Ar == Eg(wro, B[y (w0, B) + iy~ Hwro, B)]
where

y( B = \/ ST -a-p):

1+822

14822
l+/32Z2

gz, B) =

andy (z, B) is always real for any realandg; it should also
be noticed thay (z, 8) = 1 andg(z, 8) = 1 for the Fourier
(z =0, B =0) case. Then the general solution of Eq. (11) is

S, &) =St Et(w, 70, B,8) + S—(w) E—(w, 70, B, §)
(12)
whereS. are arbitrary complex constants and
E+(w, 10, B, £) = eV@/28@0.Ply (@t0.H)+iy~Hwro.p)l
— oTA@.10.5)5
with
Aw, 10, B) = w/2g(w10, B)[y (@70, B) + iy M@0, B)]
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The heat flux field can also be split into a steady and a
fluctuating component

+00

060 =a0@)+ [ 0w e do (19)
with

T
qa(é)=(q($,t))=T|iLnoo%/q($,r)dr

0
From Eq. (9)

_ kdTu(6)

qa(é)——z o (14)
and

k ~
Q(a)v ‘i:) = ZA(ws 70, ﬁ)

X [S—(@)E-(w, 10, B, §) — S+ (@) E1(w, 70, B, )] (15)
with
~ 1+ iwtoB)
Aw, 10, B) = Aw, 10, B) 1+iomn)
A practical way to generate an oscillating thermal field
is to impose an oscillating thermal flux on the slab surface.
The slab can also exchange heat with the environment (by
convection or radiation). Lep 1(t) = P01 + I10.1(7)
be the heat flux (generated, for example, by a laser beam
impinging on the slab surfaces or by a thin foil electrically
heated) imposed to the slab surfaces (the subscript is O for
& =0, and 1 forg = 1) with (Py.1(z)) = Ps,0,1 @and

(16)

+oo
Moa(7) = f Ko1(w)e'" dw

—00

(17)

By considering only convective heat transfer on the slab
surfaces, the boundary conditions become

£§=0: Py(t)=¢(0,7)+h(T(O, 1) —Ty,)

£=1 Pu(D)=—q10)+h(TA 1)—T,) (18)
Applying the operatot) to Eq. (18) one obtains:

§=0: POZCIa(O)+h(Ta(O)_Tg)

£=1 Pi=—q.)+h(T,(D)—Ty) (19)

and substituting Egs. (10) and (15) into (18) and using (19):

£Ko(w) = Q(w,0) +Bi S(w, 0)
k (20)

%Kl(w) =—Q(w,1) +Bi S(w,1)

then introducing Egs. (17), (15) and (12) into (20)
L ~
~Ko(@) =S-(o, 0)[Bi + A(w, 10, B)]
+ S (w, 0)[Bi — A(w, 10, B)]
L .~
;Kl(w) =S_(w,0E_(w, 70, B, D[Bi — A(w, 70, B)]
+ S (0, 0 E4 (o, 10, B, D[Bi + Aw, 10, B)]
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This system has the following solutions:

S* (0)) = R+(CL), 70, ;37 BI)E+(0)7 70, ﬁs 1)](0(0))
— R_(w, 10, B, B) K1(w)

S+(w) = Ry (w, 10, B, Bi) K1(w)

— R_(w,70, 8. BYE_(w, 10, B. DKo(w)  (21)
where
L. .~
Ry = ;[a + A(w, 10, B)]
x ([Bi+ Alw, 10, ,3)]2E+(0), 70, B, 1)
+ [Bi — A(, 10, ﬁ)]zEf(w, 70, B, 1))7l
R_= %[Bi — A(w, 10, B)]
x ([Bi+ Alw, 10, ,3)]2E+(0), 70, B, 1)
+[Bi — A, 10, ) E_ (0,70, 8. D) " (22)
finally, solution (12) can be written as
S(w, &) = Ko(w) Io(w, 10, B, Bi, &)
+ Ki(w) 1(@, 10, B, Bi, §) (23)

with

Io(w, 70, B, Bi, §) = Ry (w, 70, B, B E4 (0, 70, B, 1 = &)
—R_(w, 70, B, BVE_(w, 70, B,1—§)
h(w, 70, B,Bi,§) = Ry (w, 10, B, BYE_(w, 10, B, )
—R_(w, 10, B, BV E4 (0, 70, B, §)
(24)

It is then interesting to observe that Eq. (23) can be
written in a vectorial form as

S@.6) =[Io(@.) h@.£)] [KO(‘”)}

K1(w) (25)

where the vectoM (w, &) = [ Io(w, &) I1(w,&)] can be

considered as a transfer matrix of the “system slab”, and

it depends also ony, 8, Bi, that means that non-Fourier
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0E 0)=TE, 1) —Ta(8)

+00

= Re{ / Z(w,£)8(@ — w)e'T dw
= Z, (@, £) coga1) — Zi (@, £) SiN@7) (26)
with
Z(0,8) =2+ (@®)E(0,70,8) + Z_ (D) E_(w, 70, §)
(27)

and
Z.(@,§) =Re{Z(@.£)}
Zi@,§) =Im{Z(@,§)}
Again, for the heatfluQ (w, §) = @ (w, £)8(w —w), then

(p(‘i:a T) = q(‘i:: T) - C]a(é)

+00

= Re: / @ (w,E)8(@ — w)e'T dw
= &, (@, &) cod@t) — P (@, &) SiN(@T) (28)
with
_ k ~ _
@(CL), S) = ZA(ws 70, 13)
X [Z_ (@) E_(@,70,§) — Z+ (@) E4 (@, 70,8)] (29)

and

@, (»,8) =Re{®(@,8)}
®i(@,%) =Im{® (@, &)}

The phase lag between the oscillating temperature field
at different locationsgp (¢, w) and the oscillation ampli-

tude A(w, &) can now be evaluated by settigé, @) =
A(w, &) sinNot + ¢ (&, w)], where

A@.) = \/22@.5) + 22@.8)
L Z@.8)

tar¢ (¢, @) ] = 2.6.5

It should be remarked that both(w, £) and¢ (¢, @) depend

also onrg.
From Eq. (12) it is easy to get

(30)

material behaviour influences the slab response to oscillating
inputs. As above pointed out, in the following only the case 7, (@, &) = [zﬁ:)@)gmgyé + Z(j>((;))en/¢772wé]
B = 0 will be analysed and all the functional dependences —

X COS(@gy%)

on B will be dropped.
+ [Zg)(w)e—mgyé _ Zﬁ)(a))emg”f]

X Sin(\/ggy_lé)

Zi(®,&) = [ZS:)(cT))e\/‘T)_/Z%’?"E — Z(j)((;))e*mgyé]

X Sin(\/ggylé)

3. Harmonicthermal fields

Harmonic solutions can be found by choosing
S+(w) =Zi(w)d(w — w)

wheres (x) is the Diracs-function (see [43]), then
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+ [ng)(cT))e\/“—’/ZgVE + Zg)(a)e*va/zg)’é]

X COS(\/ggylé) 50

the four functionszg)(a)), Zg)(a)) can be evaluated from
the boundary conditions. Let agaifg1(r) = P, 01 + g o
Ip.1(t) be the heat flux imposed to the slab surfaces (the
subscript is 0 fo& =0, and 1 foré = 1) with (Pg1(7)) =

P,.,0.1 and for the harmonic case let set 50

+00
I 1(7) = Re{ / Ko 1(0)8(@ — w)e'® da)} . ) . ) , ,

0 200 400 600 800 1000
VS ©
_ )= =\ _ () = i
- KO,l(w) coswr) KO,l(w) sin(r) Fig. 1. Surface temperature phase lag for the Fourier agse 0) without

= HO,l((T)) sin(wt + ¢0’1) (31) convectionBi = 0.
where P,.1 can be different from zero). As in this cagg(@) =
K(()f?l.(a)) _ |m{Ko,1(cT))} — — Ho1(@) cod¢o.) —i Ho(w) (WhereHp() is real)
K@) = Re{Ko1(®@)} = Ho,1(@) Sin(¢o,1) (@, 0) = —Ho(®)i Io(®. 70, Bi, 0)

Without loss of generality, one can pgi = 0 andgy = ¢, 2(@, 1) = —Ho(@)i lo(®, 70, BI, 1

thus and

k@ =0 Z,(@,£) = Re{— Ho(@)i Io(@, 70, Bi, £) }
]((()")(5)) = —Ho(®@) = Ho(w)Io,i (@, T0, Bi, §)
K@) = Hy(@) sin(g) Zi(@.§) = Im{~Ho(@)i lo(@, 0, Bi, §)}
K@) = — Hy(@) cos) (32) = ~Ho@)o,r @ 0. BI. )

By applying the boundary conditions, Eq. (21) becomes the phase lag assumes the form

Z_@) = Ry (@. 0. B) E+ (. 10. 1) Ko(@) o 2,@.6)
— R_(@. 10.B) K1(@) P& o w0 B) = amar[_ Z:(@.) }
Z+(@) = Ry (@, 10, B)K1(@) _ arctar[ Io,i (@, 70, Bi, é)}
— R_(@, 10, BYE_(@. 10, 1) Ko(®) Io (@, 0, Bi, §)

and the temperature field on the surfaces can be evalua'[e({fIearly independent of the amplitude of the imposed oscil-
pe ating flux. The phase lag between the surface temperatures
from the equations

_ _ A¢1 0@, T0, Bi) = ¢ (1, , 10, Bi) — ¢(0, w, 10, Bi)
Z(w,0) = Ko(@)Io(®, T0, Bi, 0) + K1(@)I1(®, T0, Bi, 0)

_ o . o , is then, for a given frequengy, a function ofrg andBi, and
Z(®,1) = Ko(@)lo(, 0, BI, 1) + K1(@) [1(w, 10, Bi, 1)

non-Fourier effects may be observed through the evaluation
of such lag. Fig. 1 showaA¢ for the Fourier caser = 0)

and withBi = 0. As expected it depends on the frequency
of the harmonic oscillation. Obviously the presence of
a convective heat transfer on the surfaces influences the
phase lag and Fig. 2 reports the influenceBifon the

4. Non-Fourier effectsfor the harmonic case

To observe some features of the harmonic case it is

interesting to evaluate the phase lags phase lag showing the differenge = A1 0(@, 0, Bi) —
B Z,(@,0) A¢1.0(®,0,0) (i.e., for the Fourier case). The effect begins
¢(0, ) = arctar) — 7.3.0) to become observable f&i > 0.1. Fig. 3 shows instead the

2,.1) non-Fourier effects for different values ef (but with Bi =
L } 0), the plotted variable isc (@, 70) = A¢1,0(w, 10,0) —

Zi(@,1) A¢10(@,0,0), i.e., the phase lag variation imposed by

for a simpler situation. Letk;(@) = 0, that means that non-Fourier behaviour. It is interesting to observe that in

the imposed heat flux on the surfage= 1 is steady (but this case the variablec appears to depend amb - r02/3,

¢, w) = arctar[—
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particularly for small values ofp, as it is shown in Fig. 3(b).
This suggests that the effect may become measurable (for
example, by a variation of the phase lag of a few degree)
for nondimensional frequencies proportional to 115/3,

for example,pc = A¢1.0(@, 10, 0) — A¢p1,0(®,0,0) = 5°

for @ = 0.4/t>'>. Finally, Fig. 4(a) and (b) show the effect
of Bi # 0 on the non-Fourier cases with = 10°® and

10 = 10"%. Again, the effect of convection becomes evident
only for Bi larger than 0.1. It is, however, evident that to
detect non-Fourier behaviour of a material by evaluating the
phase lagBi must be kept small, condition achievable by
both keeping a small value of the convective coefficiént (
and a small slab thickness).

Fig. 2. Influence of convection on the surface temperature phase lag for the

Fourier case.
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5. The periodic nonhar monic case

Harmonic periodic heating is a condition not easy to
achieve in practice; it is much easier to obtain periodic
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Fig. 3. (@) Non-Fourier effects on surface temperature phase lag for different Vernotte number without conBeeti@®). (b) Functional dependence of
surface temperature phase lag for the non-Fourier case without conveRitierdy.
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Fig. 4. Effect of convection on surface temperature phase lag in non-Fourier conduction for two values of the nondimensional reIaxatiorbtiﬁm@)
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Fig. 6. Temperature fluctuation for a given input functidfy(¢)) for different Vernotte numbers and for two different periods of the input function.

nonharmonic heating (for example, by pulsed laser heating, I1) for @ — oo is oscillating (see Appendix A) for all £ 0
etc.). Let again consider the simpler situation achievable (§ # 1) around the value-,/7g. To better appreciate these
by heating only one surface, so that ag&if(@) = 0. The facts, let us consider an input heating of the form

solution (25) can then be written as Bo, for2n7T <t <@n+ 17T
TTo(r) = { 0, for@i+DT<t<@i+2T
S(@.8) = [Io(@, &) h,§)] | Ko | | |
) olw, 1w, K1(w) forn =0,41,..., where Z is the period (see Fig. 6(a)).
_ The input Ko(w) can be calculated from Eq. (17) and the
= Io(w, §)Ko(w) (33) temperature fluctuation can be calculated as well (from

The transfer functionp(w, §) acts on the “input” signal  EQ. (10)). The shape of the temperature fluctuations n
both by damping the oscillation amplitude and changing the 0) reported in Fig. 6(a) and (b) (for two different values of

wave shape. The transfer functions magnitutigéw, 0)| the input signal period’) show the usual damped response
and|Io(w, 1)| (relating the input fluctuation to the surfaces for the Fourier case, as increases a sharper response is
temperature fluctuations) are reported in Fig. 5Boe= 0. observed as the damping of the larger frequency become less

As expected, the smalletp, the larger the frequency at effective (see also Fig. 5).
which the non-Fourier effects become observable. The Itis also interesting to observe that the cross-correlation
magnitudes flatten out after a certain frequency, showing Peétween the input signal and the surface temperature at
that the larger frequency components of the oscillating fields §=0
are not damped in the Cattaneo case, whereas they become T
vanishingly small for the Fourier case. It is of a certain C(7) = 7T|im /9(;,0)170(; +1)dt

— 00

interest to notice that the asymptotic behaviour/@iand 9
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Fig. 7. The functionZ (w, 7o) for different Vernotte numbers. Fig. 8. Functional dependence 8f(-) and its asymptotic behaviour.
evaluated, showing that the study of this characteristic

has a Fourier transfor
(@) function can give information about the non-Fourier

o _ behaviour of the material.
C(r)= / Io(w)e'" dw — Harmonic oscillating thermal fields were analysed and
% some peculiar characteristics were evidenced, like the

dependence of the phase lag between surface tempera-

related to Ko(w) and $(0,w) by the relation (see, for tures on Vernotte number and convective boundary con-

example, [43,44])
INo(w) = S(w, 0K (w)
and then

Io(w) = S(w, 0)Kq(w) = Io(w, 0)\1(0(60)\2

ditions. This would allow to evaluate the relaxation time
from phase lag measurements, usually more feasible
than intensity (direct temperature) measurements, and
the present findings show the limit imposed to this pos-
sible technique by the effects of convection.

— Nonharmonic periodic thermal fields, obtainable by pe-
riodic heating of the material surface, were analysed and
the effect of non-Fourier behaviour on the oscillating
temperature profiles was pointed out. It was also shown
that the Fourier components of the cross-correlation be-
tween the input heat-flux and the surface temperature
can be used to evaluate the relaxation time of a material,
independently of the actual shape of the heating pulses.

so that

_Re(lo@) _Rello@,0)
IM{To@)]  Im{Io(w. 0))

is independent of the actual shape of the input sidghat)

and of the surface temperature respofige 0), but only
depends on the material characteristics, hidden/ig(®, 0).

Fig. 7 shows the functior& (w) for different values of
the Vernotte numbetg for the caseBi = 0, but it easy

to show (see Appendix C) tha (w, 7o) can be expressed
(for Bi = 0) as a function ofvrp and & (wtg) = y ~2(w10)
(see Fig. 8). This result shows how it is possible to observe
non-Fourier behaviour of a material by evaluating the cross-  The phase lag (0, @) for the Fourier caser§ = 0, # = 0)
correlation between the imposed heat flux and the surfacegnq forBi = 0 is
temperature, independently of the actual shape of the heating

pulses. ¢(0,,0,0,0) = arctar[

E(w, 10) =

Appendix A

1§’ (@,0,0,0,0)

but

Io(@,0,0,0,0) =[R4(@,0,0,0)E4(,0,1)
—R_(0,0,0,00E_(»,0,1)]

6. Conclusions

The paper investigates the effects of non-Fourier charac-
teristics of the material on oscillating thermal fields in a 1-D

slab and the following conclusions were obtained: and
L 1
R, =——=
— A general solution in terms of Fourier transform was Tk Aw,0,0[E4+(®,0,1) + E_(w,0,1)]
obtained for an 1-D slab with convective boundary L -1
conditions and the “transfer function” of the slab was * A(w. 0. O[E+ (@, 0,1) + E_(,0, 1)] =—Ry



G.E. Cossali / International Journal of Thermal Sciences 43 (2004) 347-357

so that

Io(®,0) = Ry (0)[E+(®,0,1) + E_(»,0,1)]

_ £ [E+(@,0,1])+ E_(w,0,1)]

~ k A(w,0,0)[E4(w,0,1) + E_(w, 0, 1)]
L

~ kA, 0,0)

For the Fourier case

A(w,fo,ﬁ)=\/g[l+i]

so that
Io(w, 0) = L 1 L 1—1i
w, —
’ k A@,0,0)  k Jo/22
that means that the phase la), @) is always equal to
¢ (0, ®) =arctanf-1] = ——
Appendix B

The asymptotic behaviour fas — oo of the functiong/p
and I; can be evaluated for the case wigh= 0 and with

Bi = 0 (the last condition can be understood as a limiting
case foBi <« /w/2). Letfind first the asymptotic behaviour

of y
lim y(wt) = lim VvV1+2z2—¢
w—> 00 —>00
=lim s oov/zy//1+ 5 -1
. 1 1
with z = wtg. Then from Eq. (22) (wittBi = 0)
L 1
R+(a), 'CO) ==
k A(w, 70, B E+(w, 70,1) + E_(w, 70, 1)]
L -1
R_(w,70) = — =
k A(w, 10, B)[E+ (@, 70, 1) + E— (@, 70, 1)]
(B.2)

and from Eqg. (24)

lo(w, 70, §)
=Ry (0, 10)[E+(®,710,1— &) + E_(w, 70,1 — §)]
I1(w, 70, §)
=Ry (0, 10)[E—(w. 70 B. &) + E4 (@, 70, B.£) ]
or, using Egs. (16) and (B.2) and the definition/bf
lo(w, 10, §)
_ LA+iww)|Ei(w,70,1—-8)+ E_(w,70,1—§)]
"k Jo2ly + iy HE+(, 10,1 + E—(0, 10, 1)]

Ii(w, 10, §)
L (+iew|Ei(w,10,8)+E (0, 710,8)]

~ k Jo/2ly +iy U[Es (. 10, 1) + E_(, 10, 1)]

Now, considering that

(1+iwt) J—(y+zy 1)+i(zy rH
Jol2ly +iy~1 Valyr =y
from Eq. (B.l)
lim [yz— )/72] =-2z
Zimoo(y +zy Y =v2zz
i Y N Y =i
Im Gy =)= Z VE=
and
. (1+la)l'0) V222 —i(JZ/V2)
lim ————— = /2
oo Jw2ly +iy 1 w0 -2z

-1
21’0(72 + zO) = —ﬁ
then the following asymptotic formulas hold:
lim Ip(w, 10, &)
w—> 00

[E+((,(), 70, 1_ ‘S‘) + E_((,(), 70, 1_ g)]

[E+(w,70,1) + E_(®w, 70, 1)]
ILmOO I1(w, 10, &)

g

—_Jwk iim [E+ (@, 70,8) + E_(w, 70, §)]
k == [E4(w,10,1) + E_(w, 10, 1)]
The asymptotic value of the functions
[E4(w,70,1—8)+ E_(w,70,1—§)]
[E+(®,70,1) + E_(», 70, D]
[E4+(w,10,8) + E—_(w, 70, §)]
[E+(®,70,1) + E—(w, 10, 1)]
can be evaluated by observing that

. T g .1
wlinooA_wlinoo\/ 2[)/-‘1-1]/ ]

Yo =

Y =

= lim_ = ﬁ[%w@}
- 7= ()

then
Jim [E4(0,70.6) + E-(.70.8)]
= lim [eAE+e_AS]
w—> 00

= lim {e"r¥[cogA;£) +isin(4;8)]

+e ¥ [cog4;6) —isin(4;€)]}
= lim {2CN(A,£) cog4;§) +i2Sh(4,£) sin(4;£)}

- o) o 7¢)
(st 29)
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and
Iim Yo(§, w)
{Ch(zf(l g))cos(f(l é))+zsh(2f(1 é))sm(f(l N}
. (G5 Je5) O ) +iS( fp) sind )
lim w1(&, w)
w—> 00
B {ch(ﬁs)coS(/‘%—OS)HSh(z—/%E)Sin(/‘%—OE)}
— T . - T 2
{Ch(z75) cos5) +iShiz ) sin( 7))

It is then easy to see that
lim ¥(0.0)=1 lim ¥1(1,w) =
whereas the asymptotic behaviour for the other values of
is oscillatory. For example,
lim Yu(1, w)
1
~ {oh(xZ5) cos ) + SN %) sin( =)}
{Ch(Zf) cog =) - lSt‘(Zf)
{Ch2( )co§( =) + S (52
_ {Ch(zf)cos(f) —iSh(5+
Ch (52 ) - S|n2(

(%)
7=) s ()}
J=)sin( )]}

ﬁ|

1

Appendix C

The function

E(w) = —Re{In(w)} /Im{Io(w) }
= —Re{Io(w,0)} /Im{Io(w, 0)}
assumes a general behaviour Bir= 0 when expressed
as a function ot = w1, in fact,
Io(w,0) = Ry (o) E4(w, 70, 1) + E_(w, 70, D]
L [E+(w,70,1) + E_(w, 10, 1)]
"k Alw, 10, 0[E4(w, 10, 1) + E_(o, 10, 1)]
_ L
" kA(w, 10,0)
and for the casg =0, Bi =0,

~ _ 1 7o .1
"(‘””0’0)—7\/70(1 +im0)~/ 5 [v (@10) +iy o)
VZ ly@+iy @)

= 2 (A+iz)
and
Io(@.0) = — L _L V2101 +iz)
’ kA(w,70,0) & zly (@) +iy~12)]

_ LV210(1+i9)ly (@) — iy (@)
Tk 2@ +y22)]
Liy@+zy Y@ +ilzy @) — vy 1@)]
=/2719—
Ok VZly2(2) + v 2(2)]
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and then
Z(w) = — Re{lo(w, 0)} _ @&+ 2y 1(@)]
Im{Io(w,0)}  [zy () -y~ (@)]
_ [y2(2) + 2] _ [V1+22—2z+7]
20 -1 [Vit2-2-
1 -2
= =7 ()
Ni+a-a |

and (see Appendix B) the asymptotic behaviou&dy) is

lim 2(z) =
7—> 00
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